Precision Frequency and Time Measurements

The Frequency Counter

- Typically displays frequency directly from 5 to 10 digits of resolution:
 - 146.52 MHz to 146.520000 MHz

- Measures the number of cycles a signal has over a specified time interval.
- The longer the measurement time the more resolution.

The Frequency Counter

- The measurement time (called gate time) is determined by a reference oscillator (usually a quartz crystal).
- The accuracy of the reference oscillator determines the accuracy of the mesurement which may be much less than the number of digits of resolution.

The Frequency Counter

- The unknown signal is converted to a square wave at a known amplitude by the signal conditioning circuits.
- The square wave signal is passed through the gate that acts like a switch that when turned on passes the signal and when turned off blocks the signal.
- The gate is controlled by an accurate timing signal derived from the reference oscillator and divider.
- When the gate switch is open the counter circuitry accumulates the number of cycles of the incoming signal which is displayed by the numeric display.

Accuracy vs. Resolution

- The least significant digit of the display is the resolution of the measurement. For a reading of 146,520,000.0 Hz the resolution would be 1/10 of a Hz.
- If the reference oscillator (also referred to the Time Base) had an uncertainty of 1x 10^6 (1 hertz in 1 MHz). In the above frequency example this would mean there could be a +/- 146.52 Hz error, or 1460 times worse than the .1 Hz resolution.

Accuracy vs. Resolution

- Before believing the displayed frequency you must consider the time base accuracy made up of the:
 - The accuracy of the reference used to set the time base
 - Temperature when calibrated.
 - The time since time base calibration.
 - Time Base drift rate of drift.
 - Time base sensitivity to temperature.
- Since the time base is typically a crystal it will drift over time and temperature.

Reference Oscillator Comparison

Type of Oscillator	Accuracy	notes
Simple Crystal Oscillators	.1 to 1Hz/MHz	Requires periodic recalibration
Temperature compensated crystals	.01 to 1 Hz/MHz	Requires periodic recalibration. Less sensitive to ambient temperature changes
Ovenized Oscillators	.0001 to .001 Hz/MHz	Requires periodic recalibration. Not sensitive to ambient temperature changes
Rubidium Oscillator	1 part 10^12	High Accuracy without periodic recalibration
Cesium beam oscillator	1 part in 10^14	Primary standard, no calibration required

Available Frequency Standards

- NIST WWV radio transmissions on 2.5, 5, 10, 15, 20 and 25 MHZ. (1 part in 10⁷)
- NIST WWVB transmission on 60 KHz (carrier frequency based on their cesium beam frequency standards)
- GPS Satellite timing approx. 1 part in 10^10 to 1 part in 10^11. Receivers are available that sync to the GPS satellite timing signals and provide a 10 MHz output,

Is My Radio On Frequency?

- When reading a frequency counter
 - Ask what is the uncertainty of the time base?
 - What is the Drift rate of the time base?
 - When was the time base last calibrated?
 - Uncertainty of the standard used for the calibration?

Is My Radio On Frequency?

• Beware of low cost counters, they generally do not have an accurate time base.

Is My Radio On Frequency?

• Better frequency counters:

METRICTESTCOM

8/22/2011

Frequency Counter Applications

- Verifying transmitter output frequencies.
- Determining calibration points on older transceivers without digital readout.
- Verifying test instrument calibration.
- Determining unknown frequency of radios and other RF emitters.
- Tuning musical instruments.
- Digital readout for older radios.

 By rearranging the functions of the counter we can measure time intervals of as little as 0.1μ second

- Gate control signals can be:
 - Switch closures
 - Photo electric
 - Specific voltage levels

- The time interval counter totalizes the number of cycles of the time base instead of the incoming frequency.
- Control of the gate is now from a start signal and a stop signal.
- Resolution is determined by the time base oscillator. With a 10 MHz time base the resolution is 0.1 µsecond.

- Measuring low frequency signals with high resolution (also known as "Period" measurements):
 - The unknown signal is used to control the gate instead of the time base.
 - The time base is counted during the period of the gate opening.
 - A period measurement is converted to Frequency by using the formula *Frequency= 1/Period*.

- Applications for time interval measurements include:
 - Speed of a vehicle by time for a specific distance traveled (Automobiles, Snow mobiles and Pine wood derby cars)
 - Charge/discharge time for a capacitor.
 - Laboratory experiments.
 - Human reaction time demonstrations.
 - Switching times of devices such relays.
 - Setting Mechanical or electrical timers.
 - Measuring Camera shutter speed.
 - Cable and other delay times.
 - Room acoustic delay.

Any Questions?

