

the incoming signal to an appropriate level that can then be shaped into a signal that can be used to control the gate opening (start counting) and closing (stop counting)

oscillator

that allows time base signals from the time base divider to reach the decade count accumulator to accumulate between separate start and stop signals

Lower frequency by the time base Divider. The time base divider frequency sets the resolution of The time interval measurement

Time Base

oscillator

an accurate frequency that can be counted between two external events, a start signal and a stop signal . A 10 MHz time base will allow 100 nS resolution timing measurements, and when divided to 100 Hz will provide 10 mS resolution

Accuracy of frequency measurements

Time base	Error at				
accuracy	14 MHz	144 MHz	220 MHz	445 MHz	1296 MHz
1 pt 10^6	14 Hz	144 Hz	220 Hz	445 Hz	1,296 Hz
1 ppm					
1 pt 10^7	1.4 Hz	14.4 Hz	22.0 Hz	44.5 Hz	129.6 Hz
0.1 ppm					
1 pt 10^8	.14 Hz	1.44 Hz	2.20 Hz	4.45 Hz	12.96 Hz
0.01 ppm					
1 pt 10^9	.014 Hz	.144 Hz	.220 Hz	.445 Hz	1.296 Hz
0.001 ppm					

Time Base Error Contribution to Frequency and Time Meas.

T/B Accuracy	Type of Oscillator		
1 pt 10^6	Generic Crystal Oscillator		
	Error of ~one second every 11 days		
1 pt 10^7	Temperature Compensated Crystal		
	Error of one second every 115 days		
1 pt 10^8 to	Ovenized crystal oscillator		
1 pt 10^9	Error of one second every 3 years		
1 pt 10^10	Precision proportional controlled special cut crystal oscillators		
	Error of one second every 300 years		
1 pt 10^11	GPS Locked Oscillators		
	Error of one second every 3,000 years		
1 pt 10^13	Rubidium and Cesium Based Oscillators		
	Error of one second every 300,000 years		

Available Standard Frequencies

WWV	2.5, 5, 10, 15, and 20 MHz transmissions from NBS		
	Subject to path changes that can effect accuracy		
WWVB	60 KHz transmission from NBS Bolder Colorado		
	Ground wave reception for most of the US, better than WWV		
CMU	7335 KHz from Canada		
GPS Locked	Surplus devices like the HP Z3801 are available at reasonable cost (\$300-\$400)		
Oscillators			
Loran C	Going away in a few years, but still in use by many		
Rubidium Oscillators	Almost an absolute standard, calibration needed		
Cesium Beam Clocks	Absolute standard, no calibration needed. Also called Atomic Clocks		

- Frequency counters are useful for measuring transmitter frequencies.
- Frequency Counter accuracy is dependent on time base accuracy.
- Frequency Counter time bases need periodic calibration.
- Do not adjust your radio oscillator unless you know the Frequency Counter being used is accurate.
- Most Frequency Counters do not like high power, use an attenuator or antenna to couple to the radio under test.